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Section 1

Categorical Variables
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Categorical variables

So far, the independent variables we have used are Income and Kidhome,
which are continuous variables.
Some variables are intrinsically not countable; we need to treat them as
categorical variables

e.g., gender, education group, city.
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Handling Categorical Variables in R using factor()

In R, we need to use a function factor() to explicitly inform R that this
variable is a categorical variable, such that statistical models will treat
them differently from continuous variables.

e.g., we can use factor(Education) to indicate that, Education is a
categorical variable.

1 data_full <- data_full %>%
2 mutate(Education_factor = factor(Education))

We can use levels() to check how many categories there are in the
factor variable.

e.g., Education has 5 different levels.
1 # check levels of a factor
2 levels(data_full$Education_factor)

[1] "2n Cycle" "Basic" "Graduation" "Master" "PhD"
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Handling Categorical Variables using factor()

factor() will check all levels of the categorical variables, and then choose
the default level based on alphabetic order.
If needed, we can revise the baseline group to another group using
relevel() function.

1 # Create a new factor variable, with Basic as the baseline.
2 data_full <- data_full %>%
3 mutate(Education_factor_2 = relevel(Education_factor,
4 ref = "Basic") )
5

6 levels(data_full$Education_factor_2)

[1] "Basic" "2n Cycle" "Graduation" "Master" "PhD"
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Running Regression with Factor Variables

1 pacman::p_load(fixest,modelsummary)
2 feols_categorical <- feols(data = data_full,
3 fml = total_spending ~ Income + Kidhome + Education_factor_2)
4 modelsummary(feols_categorical,
5 stars = T,
6 gof_map = c('nobs','r.squared'))

(1)

(Intercept) −180.297**
(56.305)

Income 0.020***
(0.000)

Kidhome −227.761***
(16.961)

Education_factor_22n Cycle −164.044**
(60.448)

Education_factor_2Graduation −119.695*
(56.176)

Education_factor_2Master −143.015*
(58.443)

Education_factor_2PhD −153.190**
(57.751)

Num.Obs. 2000
R2 0.662
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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One-Hot Encoding of factor()

In the raw data, Education is label-encoded with 5 levels.

After factorizing education with “Basic” as the baseline group, internally,
we have 4 binary indicators as follows. Because we have the
intercept,”Basic” is omitted as the baseline group. Other groups represent
the comparison relative to the baseline group.
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Interpretation of Coefficients for Categorical Variables

In general, R uses one-hot encoding to encode factor variables with K
levels into K-1 binary variables.

As we have the intercept term, we can only have K-1 binary variables.
The interpretation of coefficients for factor variables: Ceteris paribus,
compared with the [baseline group], the [outcome variable] of [group
X] is higher/lower by [coefficient], and the coefficient is statistically
[significant/insignificant].

Ceteris paribus, compared with the basic education group, the total
spending of PhD group is lower by 153.190 dollars. The coefficient is
statistically significant at the 1% level.

Now please rerun the regression using Education_factor and interpret
the coefficients. What’s your finding?

Conclusion: factor variables can only measure the relative difference in
outcome variable across different groups rather than the absolute levels.
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Application of Categorical Variables in Marketing

Analyze the treatment effects in A/B/N testing, where 𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 is a
categorical variable that specifies the treatment group customer 𝑖 is in:

𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑖 = 𝛽0 + 𝛿𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝜖

Analyze the brand premiums or country-of-origin effects:

𝑆𝑎𝑙𝑒𝑠𝑖 = 𝛽0 + 𝛽1𝐵𝑟𝑎𝑛𝑑𝑖 + 𝛽2𝐶𝑜𝑢𝑛𝑡𝑟𝑦𝑖 + 𝑋𝛽 + 𝜖
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Section 2

Non-linear Effects
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Quadratic Terms

If we believe the relationship between the outcome variable and
explanatory variable is a quadratic function, we can include an additional
quadratic term in the regression to model such non-linear relationship.

𝑡𝑜𝑡𝑎𝑙𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔 = 𝛽0 + 𝛽1𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛽2𝐼𝑛𝑐𝑜𝑚𝑒2 + 𝜖
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Quadratic Terms

If the coefficient for 𝐼𝑛𝑐𝑜𝑚𝑒2 is negative, then we have an downward open
parabola. That is, as income increases, total spending first increases and
then decreases, i.e., a non-linear, non-monotonic effect.

As income first increases, customers increase their spending with Tesco due
to the income effect; however, as customers get even richer, they may
switch to more premium brands such as Waitrose, so their spending may
decrease due to the substitution effect.
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Quadratic Terms in Linear Regression

Let’s run two regressions in the Quarto document, with and without the
quadratic term.

1 # model 1: without quadratic term
2 feols_noquadratic <- feols(data = data_full,
3 fml = total_spending ~ Income )
4

5 # model 2: with quadratic term
6 feols_quadratic <- feols(data = data_full%>%
7 mutate(Income_squared = Income^2 ),
8 fml = total_spending ~ Income + Income_squared )
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Quadratic Terms in Linear Regression

1 modelsummary(list(feols_noquadratic,
2 feols_quadratic),
3 stars = T,
4 fmt = fmt_sprintf("%.2e"),
5 gof_map = c('nobs','r.squared'))

(1) (2)
(Intercept) −5.57 × 102*** −6.27 × 102***

(2.17 × 101) (3.65 × 101)
Income 2.24 × 10−2*** 2.53 × 10−2***

(3.84 × 10−4) (1.30 × 10−3)
Income_squared −2.66 × 10−8*

(1.12 × 10−8)
Num.Obs. 2000 2000
R2 0.629 0.630
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Quadratic Terms: Compute the Vertex

We can compute the vertex point where total spending is maximized by
income

1 # extract the coeffcient vector using $ sign
2 feols_coefficient <- feols_quadratic$coefficients
3 feols_coefficient

(Intercept) Income Income_squared
-6.270403e+02 2.533276e-02 -2.663682e-08

1 # Use b / (-2a) to get the vertex
2 - feols_coefficient[2]/
3 (2 * feols_coefficient[3])

Income
475521.5
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Section 3

Linear Probability Model
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Linear Probability Model

In Predictive Analytics, we learned how to use decision tree and random
forest to make predictions for binary outcome variables.
In fact, linear regression can also be used as another supervised learning
model to predict binary outcomes. When the outcome variable is a binary
variable, the linear regression model is also called linear probability model.

On the one hand, regression predicts the expectation of response 𝑌
conditional on 𝑋; that is

𝐸[𝑌 ] = 𝐸[𝑋𝛽 + 𝜖] = 𝑋𝛽

On the other hand, for a binary outcome variable, if the probability of
outcome occurring is 𝑝, then we can write the expectation of 𝑌 is

𝐸[𝑌 ] = 1 ∗ 𝑝 + 0 ∗ (1 − 𝑝) = 𝑝

As a result, we have the following equation
𝑝 = 𝑋𝛽

Interpretation of LPM coefficients: Everything else equal, a unit change in
𝑥 will change the probability of the outcome occurring by 𝛽.
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Pros and Cons of LPM

We use linear regression function feols() to train the LPM on the
training data and make predictions using predict(LPM, data_test) to
make predictions on the test data.
Advantages

Fast to run, even with a large number of fixed effects and features
High interpretability: coefficients have clear economic meanings

Disadvantages
Predicted probabilities of occurring may fall out of the [0,1] range
Accuracy tends to be low
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