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Categorical variables

@ So far, the independent variables we have used are Income and Kidhome,
which are continuous variables.

@ Some variables are intrinsically not countable; we need to treat them as
categorical variables

e e.g., gender, education group, city.
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Handling Categorical Variables in R using factor ()

@ In R, we need to use a function factor () to explicitly inform R that this
variable is a categorical variable, such that statistical models will treat
them differently from continuous variables.

e e.g., we can use factor (Education) to indicate that, Education is a
categorical variable.
1 data_full <- data_full %>%
2 mutate(Education_factor = factor(Education))

@ We can use levels() to check how many categories there are in the

factor variable.
e e.g., Education has 5 different levels.

1 # check levels of a factor
2 levels(data_full$Education_factor)

[1] "2n Cycle" "Basic" "Graduation" "Master" "PhD"
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Handling Categorical Variables using factor ()

o factor() will check all levels of the categorical variables, and then choose
the default level based on alphabetic order.
@ If needed, we can revise the baseline group to another group using
relevel() function.
1 # Create a new factor variable, with Basic as the baseline.
data_full <- data_full %>%
mutate(Education_factor_2 = relevel (Education_factor,
ref = "Basic") )

N

W

6 levels(data_full$Education_factor_2)

[1] "Basic" "2n Cycle"  "Graduation" "Master" "PhD"
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Running Regression with Factor Variables

pacman: :p_load(fixest,modelsummary)
feols_categorical <- feols(data = data_full,
fml = total_spending -~ Income + Kidhome + Education_factor_2)
modelsummary (feols_categorical,
stars = T,
gof_map = c('nobs', 'r.squared'))

QTR W

(1)
(Intercept) —180.297**
(56.305)
Income 0.020%**
(0.000)
Kidhome —227.761***
(16.961)
Education_factor_22n Cycle —164.044**
(60.448)
Education_factor_2Graduation —119.695*
(56.176)
Education_factor_2Master —143.015*
(58.443)
Education_factor_2PhD —153.190**
(57.751)
Num.Obs. 2000
R2 0.662

+p <01, %p <005 **p < 0.0, ** p < 0.001
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One-Hot Encoding of factor ()

@ In the raw data, Education is label-encoded with 5 levels.

ID Education
1 5524 Graduation
2 2174 Graduation
3 4141 Graduation
4 6182 Graduation

5 5324 PhD
6 7446 Master
7 965 Graduation
8 6177 PhD
9 4855 PhD
10 5899 PhD

o After factorizing education with “Basic” as the baseline group, internally,
we have 4 binary indicators as follows. Because we have the
intercept,” Basic” is omitted as the baseline group. Other groups represent
the comparison relative to the baseline group.

ID Edu_2n Cycle Edu_Graduation Edu_Master Edu_PhD

: 5524 ] 1 ]
1 2174
4141
6182
5324
7446
965
6177
4855
: 5899
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Interpretation of Coefficients for Categorical Variables

@ In general, R uses one-hot encoding to encode factor variables with K
levels into K-1 binary variables.

o As we have the intercept term, we can only have K-1 binary variables.

@ The interpretation of coefficients for factor variables: Ceteris paribus,
compared with the [baseline group], the [outcome variable] of [group
X] is higher/lower by [coefficient], and the coefficient is statistically
[significant /insignificant].

o Ceteris paribus, compared with the basic education group, the total
spending of PhD group is lower by 153.190 dollars. The coefficient is
statistically significant at the 1% level.

@ Now please rerun the regression using Education_factor and interpret
the coefficients. What's your finding?

o Conclusion: factor variables can only measure the relative difference in
outcome variable across different groups rather than the absolute levels.
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Application of Categorical Variables in Marketing

@ Analyze the treatment effects in A/B/N testing, where Treatment; is a
categorical variable that specifies the treatment group customer 7 is in:

Outcome,; = B, + 6Treatment,; + €

@ Analyze the brand premiums or country-of-origin effects:

Sales; = By + B Brand; + ByCountry; + X3 + €
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Quadratic Terms

o If we believe the relationship between the outcome variable and
explanatory variable is a quadratic function, we can include an additional
quadratic term in the regression to model such non-linear relationship.

totalspending = By + By Income + ByIncome® + €
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Quadratic Terms

o If the coefficient for Income? is negative, then we have an downward open

parabola. That is, as income increases, total spending first increases and

then decreases, i.e., a non-linear, non-monotonic effect.

o As income first increases, customers increase their spending with Tesco due
to the income effect; however, as customers get even richer, they may
switch to more premium brands such as Waitrose, so their spending may
decrease due to the substitution effect.

Parabola y=ax* +bx+c¢

a>0 a<0

opens upward  opens downward
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Quadratic Terms in Linear Regression

Linear Probability Model
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@ Let's run two regressions in the Quarto document, with and without the

quadratic term.

1 # model 1: without quadratic term

2 feols_noquadratic <- feols(data = data_full,

3 fml = total_spending ~ Income )

5 # model 2: with quadratic term

feols_quadratic <- feols(data = data_full),>

6
7 mutate (Income_squared = Income”2 ),
8

fml = total_spending ~ Income + Income_squared )
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Quadratic Terms in Linear Regression

modelsummary (list (feols_noquadratic,
feols_quadratic),
stars = T,
fmt = fmt_sprintf("%.2e"),
gof_map = c('nobs', 'r.squared'))

R W N e

(1) (2)
(Intercept) —5.57 x 102*%*  _§.27 x 102%**
(2.17 x 101) (3.65 x 101)
Income 2.24 x 1072%kx 253 x 17 2xk*
(3.84 x 107%) (1.30 x 1073)
Income_squared —2.66 x 1078%*
(1.12 x 1078)
Num.Obs. 2000 2000
R2 0.629 0.630

+ p <0.1, *p <0.05 **p < 0.01, ¥** p < 0.001
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Quadratic Terms: Compute the Vertex

@ We can compute the vertex point where total spending is maximized by
income

1 # extract the coeffcient vector using $ sign
2 feols_coefficient <- feols_quadratic$coefficients
3 feols_coefficient

(Intercept) Income Income_squared
-6.270403e+02  2.533276e-02 -2.663682e-08

1 # Use b / (-2a) to get the vertex

2 - feols_coefficient[2]/
3 (2 * feols_coefficient[3])
Income

475521.5
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Linear Probability Model

@ In Predictive Analytics, we learned how to use decision tree and random
forest to make predictions for binary outcome variables.

@ In fact, linear regression can also be used as another supervised learning
model to predict binary outcomes. When the outcome variable is a binary
variable, the linear regression model is also called linear probability model.

e On the one hand, regression predicts the expectation of response Y
conditional on X; that is

E[Y] = E[XB+ ¢ = X

@ On the other hand, for a binary outcome variable, if the probability of
outcome occurring is p, then we can write the expectation of Y is

ElY]=1xp+0x(1—p)=p

o As a result, we have the following equation

p=Xp

@ Interpretation of LPM coefficients: Everything else equal, a unit change in
x will change the probability of the outcome occurring by S.
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Pros and Cons of LPM

@ We use linear regression function feols() to train the LPM on the
training data and make predictions using predict (LPM, data_test) to
make predictions on the test data.

@ Advantages

o Fast to run, even with a large number of fixed effects and features
e High interpretability: coefficients have clear economic meanings

@ Disadvantages

o Predicted probabilities of occurring may fall out of the [0,1] range
o Accuracy tends to be low
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