Estimation of Coefficients

Interpretation of Coefficients

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Class 12 OLS Regression Basics

Dr Wei Miao

UCL School of Management

November 8, 2023

Estimation of Coefficients

Interpretation of Coefficients

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Section 1

Basics of Linear Regression

Estimation of Coefficients

Interpretation of Coefficients

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Linear Regression Models

• A simple linear regression is a model as follows.

$$Y_i=\beta_0+x_1\beta_1+x_2\beta_2+\ldots+x_k\beta_k+\epsilon_i$$

- y_i : Outcome variable/dependent variable/regressand/response variable/LHS variable
- β : Regression coefficients/estimates/parameters; β_0 : intercept
- $x_k\colon$ Control variable/independent variable/regressor/explanatory variable/RHS variable
 - Lower case such as x_1 usually indicates a single variable while upper case such as X_{ik} indicates a set of several variables
- ϵ_i : Error term, which captures the deviation of Y from the prediction
 - Expected mean should be 0, i.e., $E[\epsilon|X]=0$
 - If we take the expectation of Y, we should have

$$E[Y|X] = \beta_0 + x_1\beta_1 + x_2\beta_2 + \ldots + x_k\beta_k$$

Estimation of Coefficients

Interpretation of Coefficients

Why the Name "Regression"?

- The term "regression" was coined by Francis Galton to describe a biological phenomenon: The heights of descendants of tall ancestors tend to regress down towards a normal average.
- The term "regression" was later extended by statisticians Udny Yule and Karl Pearson to a more general statistical context (Pearson, 1903).
- In supervised learning models, "regression" has a different meaning: when outcome is continuous, the task is called regression task.¹

 $^{^{1}}$ ML models are developed by computer science; causal inference models are developed by economists. $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Box \rangle$

Estimation of Coefficients

Interpretation of Coefficients

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Section 2

Estimation of Coefficients

Estimation of Coefficients

Interpretation of Coefficients

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

How to Run Regression in R

- In R, there are tons of packages that can run OLS regression.
- In this module, we will be using the fixest package, because it's able to estimate high-dimensional fixed effects.

```
1 pacman::p_load(modelsummary,fixest)
2
3 OLS_result <- feols(
4 fml = total_spending ~ Income, # Y ~ X
5 data = data_full, # dataset from Tesco
6 )</pre>
```

Estimation of Coefficients

Interpretation of Coefficients

Report Regression Results

```
1 modelsummary(OLS_result,
2 stars = TRUE # export statistical significance
3 )
```

	(1)
(Intercept)	-552.235***
	(20.722)
Income	0.021***
	(0.000)
Num.Obs.	2000
R2	0.630
R2 Adj.	0.630
AIC	29130.1
BIC	29141.3
RMSE	351.63
Std.Errors	IID

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Estimation of Coefficients

Interpretation of Coefficients

Parameter Estimation: Univariate Regression Case

• Let's take a univariate regression² as an example

 $y = a + bx_1 + \epsilon$

• For each guess of a and b, we can compute the error for customer i,

$$e_i = y_i - a - bx_{1i}$$

• We can compute the sum of squared residuals (SSR) across all customers

$$SSR = \sum_{i=1}^n \left(y_i - a - bx_{1i}\right)^2$$

- **Objective of estimation**: Search for the unique set of *a* and *b* that can minimize the SSR.
- This estimation method that minimizes SSR is called **Ordinary Least Square (OLS)**.

Basics	of	Linear	Regression
000			

Estimation of Coefficients

Interpretation of Coefficients

Visualization: Estimation of Univariate Regression

• If in the Tesco dataset, if we regress total spending (Y) on income (X)

Model	Color	Sum of Squared Error
Y = -552 + 0.06 * X Y = 0 + 0.004 * X Y = -552 + 0.021 * X	Purple Red Green	$\begin{array}{c} 1.6176047 \times 10^{13} \\ 5.093683 \times 10^{11} \\ 2.0205681 \times 10^{9} \end{array}$

Estimation of Coefficients

Interpretation of Coefficients

Multivariate Regression

• The OLS estimation also applies to multivariate regression with multiple regressors.

$$y_i = b_0 + b_1 x_1 + \ldots + b_k x_k + \epsilon_i$$

• **Objective of estimation**: Search for the **unique** set of *b* that can minimize the **sum of squared residuals**.

$$SSR = \sum_{i=1}^n \left(y_i - b_0 - b_1 x_1 - \ldots - b_k x_k\right)^2$$

Estimation of Coefficients

Interpretation of Coefficients

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Section 3

Interpretation of Coefficients

Basics	of	Linear	Regression
000			

Estimation of Coefficients

Interpretation of Coefficients

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Coefficients Interpretation

• Now on your Quarto document, let's run a new regression, where the DV is *total_spending*, and X includes *Income* and *Kidhome*.

	(1)	_
(Intercept)	-316.878***	
	(26.972)	
Income	0.019***	
	(0.000)	
Kidhome	-210.613***	
	(16.282)	
Num.Obs.	2000	_
R2	0.658	
R2 Adj.	0.658	
AIC	28971.2	
BIC	28988.0	
RMSE	337.77	
Std.Errors	IID	

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

• **Controlling for** Kidhome, one unit increase in Income increases totalspending by £0.019.

Estimation of Coefficients

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Standard Errors and P-Values

- Because the regression is estimated on a random sample of the population, so if we rerun the regression on different samples, we would get a different set of regression coefficients each time.
- In theory, the regression coefficients estimates follows a **t-distribution**: the mean is the true β . The **standard error** of the estimates is the estimated standard deviation of the error.
- We can test whether the coefficients are statistically different from 0 using **hypothesis testing**.
 - Null hypothesis: the true regression coefficient β is 0
- Income/Kidhome is statistically significant at the 1% level.

Estimation of Coefficients

R-Squared

- R-squared (R2) is a statistical measure that represents the proportion of the variance for a dependent variable that's explained by all included variables in a regression.
- Interpretation: 65.8% of the variation in totalspending can be explained by Income and Kidhome.
- As the number of variables increases, the R^2 will naturally increase, so sometimes we may need to penalize the number of variables using the so-called **adjusted R-squared**.

Important I

R-Squared is only important for supervised learning prediction tasks, because it measures the predictive power of the X. However, In causal inference tasks, R^2 does not matter much.