Class 5 Data Wrangling with R (Part II)

Dr Wei Miao

UCL School of Management

October 18, 2023

Section 1

Data Wrangling Part II

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Data Wrangling Part II

- Select rows (filter)
- Sort rows (arrange)
- Select columns (select)
- Generate new columns (mutate)
- Group aggregation (group_by): compute statistics for each group
- Merge datasets (join): combine datasets from different sources

Descriptive Analytics

Aggregation by Groups: group_by

• group_by() allows us to aggregate data by group and compute statistics for each group

Data Cleaning

- 1 # group by marital status
- 2 data_demo %>%

Data Wrangling Part II

0000000000

- 3 group_by(Marital_Status)
 - Internally, the dataset is already grouped based on the specified variable(s).


```
Data Wrangling Part II
```

Aggregation by Groups: group_by() %>% summarise()

- After aggregating data, we can use summarise() to compute group-specific statistics for us.
 - Similar to mutate() in generating new variables
 - Different from mutate() in that the new variable is computed based on groups.

```
1 # compute the average income for each marital status group
```

```
2 data_demo %>%
```

```
3 group_by(Marital_Status) %>%
```

```
4 summarise(avg_income = mean(Income,na.rm = T)) %>%
```

```
5 ungroup()
```

avg_income
43789.00
53300.63
51776.36
51091.16
52609.59
56158.90

```
• What if you replace summarise() with mutate()?
```

Data Wrangling Part II	
000000000	

Aggregation by Groups: group_by() Multiple Groups

- We can have multiple group variables for group_by , such as computing average income for each marital status, education combination
- $_{1}\,$ # compute the average income for each marital, education group
- 2 data_demo %>%
- 3 group_by(Marital_Status,Education) %>%

```
4 summarise(avg_income = mean(Income,na.rm = T)) %>%
```

```
5 ungroup() %>%
```

```
6 \quad head(5)
```

Marital_Status	Education	avg_income
Alone	Graduation	34176
Alone	Master	61331
Alone	PhD	35860
Divorced	2n Cycle	49345
Divorced	Basic	9548

Data	Wrangling	Part II
000	000000	0

Consolidate Multiple Data Frames

- When consolidating multiple data frames, we have 4 types of joining methods
- left_join() handles most data join situations, which we will focus on today.

Data	Wrangling Part II	
000	0000000	

Data Cleaning

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

left_join()

- left_join keeps everything from the left data frame and matches as much as it can from the right data frame based on the chosen IDs.
 - All IDs in the left data frame will be retained
 - If a match can be found, value from the right data frame will be filled in
 - If a match cannot be found, a missing value will be returned
- 1 df_left %>%
- 2 left_join(df_right, by = c('ID' = 'ID'))

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Caveats for doing left_join()

• We can do 1:1, or M:1 left_joins

• Never do 1:M or M:M left_joins

demographics: 1						Tr	ansaction da	ita:	М		
ID		age	▼	income		ID	▼	transaction	▼	revenue	▼
	1		15	30	000		1		1		12
	2		18	10	000		1		2		2
							2		1		10
							2		2		5
							2		3		10

Data Cleaning

Descriptive Analytics

inner_join() (optional)

- inner_join only keeps the observations that appear in both data frames
 - Only common IDs in both data frames will be retained
 - If a match can be found, values will be filled in from both data frames

```
1 # Method 1 without pipe operator
2 inner_join(df_left, df_right, by = 'ID')
3 # Method 2 with pipe operator
4 df_left %>%
5 inner_join(df_right, by = 'ID')
6 # Method 3: order of data frames should not matter. Why?
7 df_right %>%
```

```
s inner_join(df_left, by = 'ID')
```


Data Cleaning

Descriptive Analytics

full_join() (optional)

- full_join keeps all observations from both data frames
 - All IDs in either data frames will be retained
 - If a match can be found, values will be filled in from both data frames

```
# Method 1 without pipe operator
1
   full_join(df_left, df_right, by = 'ID')
2
   # Method 2 with pipe operator
3
   df_left %>%
4
     full_join(df_right, by = 'ID')
5
   # Method 3: order of data frames should not matter. Why?
6
   df_right %>%
7
     full_join(df_left, by = 'ID')
8
```


Section 2

Data Cleaning

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Missing Values

- In R, missing values are represented by the symbol NA (i.e., not available).
- Most statistical models cannot handle missing values, so we need to deal with them in R.
 - Few missing values: remove them from analysis.
 - Many missing values: need to replace them with appropriate values: mean/median/imputation

Outliers

- Sometimes, due to data collection errors, we may have abnormal observations in the data, such as unusually large and small values
- Winsorization is a common way to deal with outliers
 - $\bullet\,$ Remove top 1% and bottom 1% observations

Section 3

Descriptive Analytics

Two Major Tasks of Descriptive Analytics

• You can think of descriptive analytics as **creating a dashboard** to display the key information you would like to know for your business.

1 Describe data depending on your business purposes

- "How much do our customers spend each month on average?"
- "What percentage of our customers are unprofitable?"
- "What is the difference between the retention rates of men and women?"

Make statistical inferences from data

- "Based on our sample, does the difference between the spending of men and women indicate that men and women respond differently in the customer base at large?"
- "Based on our sample, can we conclude that customers who sign up for online banking are more profitable than customers who do not?"
- ${\ensuremath{\bullet}}$ "Based on our test mailing, can we conclude that ad-copy A works better than ad-copy B?"

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary Statistics

- **Summary statistics** are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible.
- There are two main types of summary statistics used in evaluation:
 - measures of central tendency: mean, the median, 25 percentile, 75 percentile, the mode, etc.
 - measures of dispersion: range and standard deviation.
- It's important to include summary statistics table in your dissertation before any statistical analysis!

```
Data Wrangling Part II
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary Statistics with R

- In R, a nice package to report summary statistics is modelsummary.
- datasummary_skim() is a shortcut to conduct basic summary statistics
- For more features, refer to the package tutorial here

```
1 pacman::pload(modelsummary)
2 ## Summary statistics for numeric variables
3 data_demo %>%
4 datasummary_skim(type = "numeric")
5
6 ## Summary statistics for categorical variables
7 data_demo %>%
8 datasummary_skim(type = "categorical")
```

Data Cleaning

Descriptive Analytics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Case Study: Preliminary Customer Analysis

• Let's solve the preliminary customer analysis case together in class!